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Abstract—The problem of an extensional stress pulse applied to a bounded helical coil assembly is
formuiated and solved. The assembly is composed of one turn of a small pitched coil attached tangentially to
two straight segments. One end of the assembly is always fixed while the other is free when not subjected to
the action of the pulse. It is found that to prevent significant portions of the shock from reaching the fixed
end, the pulse length should be longer than the circumference of the coil but shorter than twice the length of
the initial straight segment. Flexural energy continuously leaks into the coil from the straight segment.
Experiments were performed which verify the analytical solution.

INTRODUCTION
The propagation of elastic tangential stress pulses along helical coils and curved bars has been
studied by a number of investigators{1-6]. This paper extends the work of [6] to a bounded
helical coil assembly. We also establish design criteria for the use of such an assembly as a shock
absorber.

Our helical coil assembly consists of three segments; two straight segments and one helical
coil segment, all made of the same material and with identical cross-sections. They are joined
tangentially as shown in Fig. 1 with one end fixed. The assembly is at rest until a tangential stress
pulse is applied to the otherwise free end of the assembly. The subsequent behavior of the
assembly is studied analytically and verification is provided by experiment. The design criteria
are drawn from these results.

As in previous paper[6], the two mode theory of coupled extension and flexure is used as the
governing theory for the helical coil, and the classical extensional theory of bars and the
Bernoulli-Euler beam theory is used for straight segments. These theories are valid in the
frequency range from zero to at least 1/15 of the thickness-shear cut-off frequency({7]. The
duration of the pulse considered is on the order of the period of the ring mode vibration of the
helical coil, and therefore the pulse has only a small portion of frequency components above the
frequency range of validity of theories employed[7].

The analytical solution is obtained by use of the Fourier time transform and the complex
frequency response of the assembly. Since the helical coil assembly is a bounded, distributed
mechanical system, it has an infinite number of eigenfrequencies. These eigenfrequencies are
simple poles of the complex frequency response. Since the assembly is assumed to be elastic and
thus a conservative mechanical system, all the eigenfrequencies are real. Hence, the Fourier
inversion integral is evaluated through residue calculation. As a result, the integral solution is
transformed into a series solution, each term in the series representing an eigenmode. For most
considerations the eigenmodes corresponding to essentially extensional motion dominate as can
be anticipated from the nature of the applied puise.

The numerical results agree well with the experiments. It is observed that the frequency
components below the ring mode frequency are largely captured in the initial straight segment,
whereas those components above the ring mode frequency travel back and forth along the helical
coil assembly. The low frequency components are seen to be transformed into flexural waves
gradually. These low frequency flexural waves then propagate along the helical coil assembly
with a group velocity much lower than the bar velocity.

The use of the assembly as a shock absorber employs its ability to trap energy in the straight
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section. Continuous leakage of flexural energy diminishes the assembly’s usefulness in this
application.

ANALYTICAL SOLUTION

The governing equations of motion and the constitutive equations are wrilten in
non-dimensional form as in the previous paper[6]. Thus, the equations of motion for a helical coil
of small pitch:

~ku"—-u+kv"—v' =i,
—ku"+u +{1+kw" =4, )]

the constitutive equations for a helical coil of small pitch:

g=v-—u,
P=yp' +u,
" iz (3)
Q=k(v"—u"),
M=kiv' —u",

the equations of motion for the straight segments:

_ kﬁ -~ ,':i,
v 3)
v" =g,
and the constitutive equations for the straight segments:
b=—u,
P e Dl’ (d)
Q o ki{ m‘r
M=~ ku"

All symbols in (1)-(4) are non-dimensional, where u and v are lateral and tangential
displacements, ¢ is the rotation, P and Q are tangential and shear forces, and M is the bending
moment. Prime and dot represent the partial differentiation with respect to the non-dimensional
spatial variable, 8, and the non-dimensional time, 7, respectively. The geometric constant k is
defined to be I/AR? and the bar velocity c is (E/p)"*, where I is the second moment of area of
the cross section of the assembly, A is the cross-sectional area, R is the mean radius of the
helical coil, E is the Young's modulus and p is the density of the material. In general, the scheme
of the non-dimensionalization is such that the length-like quantities are divided by R, the
velocity-like quantities are divided by ¢, and the force-like quantities are divided by EA.

The boundary conditions are as shown in Fig. 1, except that the end, ¢ = 8, receives the
tangential stress pulse starting at T = 0. Thus, the boundary conditions are

P(6:, 7)=h{r),

Q{6,711 =0,
M{f,1)=0,
D(8y-, 7) = D027, 7), for Delu, v, 4, P, Q, M1,
O(6-, 7y=D(05+,7), for Delu, v,y P,Q, M},
ulfs, vy = v{Ba, 7= Y{fs, 7} =0

for all . (5}

The input function, h(r), satisfies the condition

hir)y=0, forall r <. {6}
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The initial conditions call for the assembly to be quiescent until = = 0. Thus,

u(f, ry=v{6,7)=90,

M
for :.< 0 <64, forall r<0.

The solution is obtained by introducing the Fourier time transforms and the complex
frequency responses. The Fourier transforms are defined by

h(Q) = fz h(r)exp (—iQr)dr,

o6, Q)= f: ®(6, ) exp (— iQ7) dr, 8

for ®elu, v, ¢, P, Q, M},
and the complex frequency responses are[5]

Go(8, 1) = D6, W/ R(Q),

8]
for ®efu, v, ¢, P, Q, M1.

The expressions for complex frequency responses are obtained by considering the sotution which
varies sinusoidally in time and which satisfies the boundary conditions of (5) with
hir)y=exp (iQd7). Thus, if P(6, 1) = exp (i{l7), then ® = G+(8, Q) exp (IQA1)[5].

Such a solution may be obtained as a superposition of all the harmonic wave solutions with
frequency (). Let us take

u = a exp li(Qhr — Z26)},
(10)
v = b exp [i{Qr - Z8)],

as the harmonic wave solution of the equation of motion. By substituting (10) into the equations
of motion (1) and (3), we get the frequency equations. Thus, for straight segments we obtain

kZ' -0 =0,
1
27— =0, o

for the flexural motion and the extensional motion respectively, and for helical coil segments we
get

KZS KO+ D2+ -1+ I+ K22+ QY - D =0. b))

The flexural motion and the extensional motion are uncoupled in the straight segments. However,
they are coupled in the helical coil segments, as is apparent from the equations of motion for
helical coil. Hence, for the helical coil segment the amplitudes, a and b of (10), are related by the
amplitude ratio r which depends upon Q and Z;

b= ar,
(13)
r={iZ - kGZYYIQ + (1 + k)(iZ)).

By superimposing all the harmonic wave solutions with frequency ( for each segment of the
assembly, we get the general solution which varies sinusoidally in time with frequency Q. Thus,



422 N. CHaNG and D. W. HAINES

for the straight segment PP, we have

¥

u=2, aqexpli(Qr-2Z6)], 6:=8¢=6,
=1
- (14)

v=> aexplilQr~Z0), 6<6=6b,
j=s
and for the helical coil segment P,P; we have

12
u=> aexplifir—Z)), 6:<0<6,
j=7
- (15)
v = E air; exp li{Qr — Z;0)], 6:<6<6,,
i=7

and for the straight segment P;P.:

16

u= aexplilQtr—2Z8)], 6:<8=<86,,
i=13

® (16)

v= > g expli(Qr~Z0)], 6:=<6<8.
i=17

The wave numbers Z; ... Z, are the roots of (1{a); the wave numbers Zs, Z are the roots of
{11b); the wave numbers Z,... Z,, are the roots of (12); the wave numbers Z,5... Z,c are the
roots of (11a) again, and the wave numbers Z,;, Z,s are the roots of (11b) again. The amplitude
ratios ry . .. ry; are obtained by substituting Z, ... Z,, into (13), respectively. Equations (14)-(16)
represent the general solution which varies sinusiodally with frequency . Other quantities such
as ¢, P, Q and M can be obtained by substituting these equations into the proper constitutive
equations (either (2) or (4) depending on the type of segment).

There are eighteen constants in (14)-(16), namely a, . . . a.;. These constants will be determined
uniquely if we impose the boundary condition of (5) with h(7) replaced by exp (i{}r) in (5a). The
boundary conditions lead to the matrix equation

[(Ullal=el, (17
where
fa]l=la; asl’,
(18)
[e]=1 0 0 017,

T denoting the transpose of the matrix.
The solution of (17) is [a]=[U]1 '[e], or in subscript notation,

@ =U;j', forallj (19

Substitution of this into (14)-(16) yields the sinusoidally varying solution that satisfies the
boundary conditions of (5) with #(7) = exp (i{l7). Also, the use of constitutive equations (either
(2) or (4) depending on the type of segment) produces ¢, P, Q and M. Recalling that for harmonic
excitation we have ® = G4(8, Q) exp (i{}7), we then obtain the explicit expressions for complex
frequency responses for which we show only G, (8, 1):

V)

-
I
wn

—Uil'iZ exp(—iZ#), 6,<8 =<0,

N

™M

G, (6, =1{ 2, U1 —iZin) exp(—iZi6), 6:<6=6,, (20

j

'ME P

~
[}
3

~U;tizZ exp(—iZ#), 6:<6<8..
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The complex frequency responses for = 0 are of particular interest. For {1 = 0 the problem
degenerates into the static problem, and therefore G4(9, 0) represents the static solution which
satisfies the boundary conditions of (5) with A(7) =1 in (Sa).

It is to be observed that G4(8, ) is not defined if the system matrix, [U], is singular which
occurs at resonance frequencies of the system for k() =0, i.e., eigenfrequencies. The following
statements concerning the eigenfrequency have been proved in [8] for this particular helical coil
assembly, and these statements are valid for any finite, continuous, one-dimensional,
non-dissipative mechanical systems in general; (1) There are infinitely many eigenfrequencies for
the system. (2) The eigenfrequencies are real. (3) Eigenfrequencies are simple poles of {U]™". and
hence of Gq4(6,Q). (4) Eigenfrequencies are the only poles of Guo(6, ). (5) If Q, is an
eigenfrequency, Res Go(6, (1) is real, and

Res Go(6, — (,.) = —Res Go(6, (2,,).

The solution that satisfies the boundary conditions and the initial conditions of (5}-(7) can be
obtained from (8) and (9) as a Fourler integral;

¢(0,r)=ﬁjv Ga(6, WA (Q) exp (iQ7) dQ, 21

where C is the contour of integration that extends from (1 = — to {1 = o, but always below the
real--axis. We choose this contour instead of the real-Q2-axis to by-pass the eigenfrequencies,
which are poles of Go(6, ). Also, by use of Jordan’s lemma and the residue theory [9] the integral
of (21) proves to be zero for 7 <0, which is in accordance with the initial conditions of (7). Now
suppose that the input pulse is a rectangular pulse with unit magnitude and duration 7. Then,

h(r)=H(7)H (10— 1), (22)
where H represents the Heaviside unit step function. From (8) and (22) we get
h(Q) =[1—exp (— iQra)l/i QL. (23)

Substitution of this into (21) and the use of Jordan’s lemma and the residue theory lead to a series
solution

Ga(6,0)+2 Z Rel[iH () exp (iQa7)] Res Gol8, Qn), 7= 10,
(6, 7)={ (24)
2 > Relih(Q.) exp (iQ.7)) Res Go(8, Qn), 7270,

where HQ)=1/iQ, and Q,, ,...are eigenfrequencies. For more detailed discussion
concerning the derivation of the series type solution the reader is referred to Ref. [8].

Since the eigenfrequencies are the simple poles of [U]™', it is apparent from (20) that
Res Go(6, 2,) can be expressed as a linear combination of Res Uji' (2,). Thus,

—iZ,; exp(—iZ0)Res U7 (Q.), 6:<6 <86,

Res G,(6,Q,) =! (1~ iZuyre) exp (— iZ;8) Res U7 (Q,), 6.<6 < 65, (25)

=

- ian €Xp ( - IZ,UO) Res l]jjl (Qn), f:=6=< 04,
17

]

where
an=Zj]ﬂ=ﬂn, ]:118, n=1,2...,
(26)
rni=ri]n=nn, }=7;812, n=1:2""
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and other residues follow this example. Note that for each term in the series of (24} the time
dependence is a harmonic function of frequency (1. Thus, each term represents the contribution
to the response of one resonance with magnitude given by the product of Res Ga(8, (1,), a system
property, and #{(}.) known from the input Fourier spectrum. The Res Go(8, §1..} will be large if
the mode of free vibration corresponding to (3, tends to be excited by the pulse, e.g. an
essentially extensional mode is strongly excited by a tangential pulse, an essentially flexural mode
is not.

NUMERICAL RESULT

For the namerical calculation, we assumed the following data;

k=756 10 *
-8 =4, 8:—-8:=2m, B B:i=4, {27
To = 2.

The computation of the solution consists of four steps. As a first step, the eigenfrequencies were
found and refined. This was done by computing the determinant of the system matrix {U].
Since the eigenfrequencies are known to be on the real frequency axis, a bisection method
was devised to refine the value of every eigenfrequency. The second step was to compute

Res U; (), j=1,2...18, n=12....

This was done by the following approximate equation for the residue as calculated from a closed
contour of radius r encircling (..

N
Res U () == S exp Qami/NYU '[Q, + r exp Qami/N)). (28)
N .~

m=

Theoretically, this approximate equation becomes exact as r -0 and N -w=, For practical
purpose, we used N = 30 and various values of r ranging from 107'° Q,, to 1077 {2,.. The third step
was to compute Res Go(4, £1,,). This was done by (25) and analogous equations for Res Go{4, (1,.)
and Res G (8, 1,.). Finally, P(8, r), Q(8, 7) and M(8, 7) were obtained from (24) and (23). The
series of (24) was truncated at the 65-th term. The numerical calculation shows that (s = 3.261,
and therefore the series after truncation accounts for frequency components up 10 {max = 3.261.
Since 7o is assumed to be 2, the third zero of the input frequency spectrum, |2 (Q)], falls at O = 3.
Thus we can expect that the truncated portion would be insignificant. Also, the two mode theory
begins to diverge from the exact theory above this frequency, and therefore truncation at
Oomax = 3.261 appears to be reasonable, The calculation was performed on an IBM/370 computer
using complex, double precision variables.

The numerical results were plotted in Figs, 3-10 as solid lines. Figure 3 is the shape of the
input tangential stress pulse. It is not strictly rectangular, because we truncated the frequency
components above (ln... Figure 4 represents the tangential stress at the mid-point of the straight
segment P, P,. The first wave in this figure represents the passing of the input rectangular pulse.
The subsequent waves indicate that a large portion of input pulse is captured in the straight
segment P, P,. The captured wave travels back and forth in the straight segment, being inverted
every time it is reflected. The dominant frequency of the captured wave is about {} = 0.608, which
is lower than the ring mode frequency ({1 = 1). Figure 5 represents the stress at point P,, the
junction between the first straight segment and the helical coil segment. The first wave in this
figure represents the arrival of the input pulse. As in Fig. 4, an inverted reflected wave appears
also. There is a time lag between the arrival of the input pulse and the arrival of the reflected wave
at point P.. This suggests that the input pulse continues to pass at least a short distance into the
helical coil segment, where it undergoes a gradual reflection because of the continuous change in
the direction of propagation. Figure 6 represents the stress at point Ps;. The peak of the first
significant ripple arrives roughly with the bar velocity, and the dominant frequency of this ripple
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Fig. 1. Helical coil assembly.

AlT)

Fig. 2. Experimental setup.

¥

Fig. 3. Input tangential stress pulse.

PB+8,)/2,7)

05

-0.5

Fig. 4. Tangential stress at the mid-point of P, P, (dotted line represents experimental result).

is about () = 2.42. Thus, from the nature of the input pulse, it is not surprising that the first signal
to reach a point within the coil is associated with the portion of the extensional branch with
highest group velocity. The frequency of the subsequent ripples is lower than this but still higher
than the ring mode frequency (Q = 1) as expected. Figure 7 represents the extensional stress at
point P,, the fixed end of the assembly. The magnitude of the first few ripples in this figure is
twice that of the first few ripples in Fig. 6 because the ripples are being reflected at this fixed end.
Returning to Figs. 4 and 5, we now recognize that the high frequency components which we
observe for 25 =1 <40 are the ripples which returned from a round trip to the fixed end, P..
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Thus, it is observed that the frequency components below the ring mode frequency are largely
captured in the initial straight segment, whereas the frequency components above it are travelling
along the whole assembly.

By assuming that the cross-section of the assembly is circular, the outside and the inside fiber
stresses can be shown to be(8]

P.=P+2k"""M. 229

From this equation, the outside and inside fiber stresses were computed and then plotted on Figs.
8 and 9, respectively. It is immediately apparent that the flexural stress is almost solely
responsible for the growth of the stress at the fixed end. Also, it is to be noted that there appear to
be two dominant frequency components. The most pronounced frequency component is
) = 0.63, which is close to the frequency of the captured wave. This suggests that some flexural
waves leak into the coil every time the captured waves return to the junction area. Superimposed
with those are very low frequency components. The dominant frequency of these is about
= 0.01 at first, but it is even lower as time passes. These can be identified as waves of low group
velocity contributed by the very low frequency portion of the dispersion curves of the coil where
three branches are real[7]. Figure 10 shows the portions of the total input energy which were
transmitted beyond points P, and P; as functions of +. This was obtained by use of the following

equations:

Ei=[ =P Qu~Miloydn
: (30)

E,-sf [~ Po Qi ~ Milaog dr. j=2.3,

where F; is the total input energy, and E; is the energy that was transmitted beyond the point P;.
Due to the dispersion of the helical coil and trapping of energy in the initial straight segment, the
energy flow rate through P; is very low, and Es/E; never reaches 1.0, which it would were it not
for the helical coil segment. The value of E,/E; fluctuates with a frequency (2 =0.608. This
oscillation occurs because the captured wave travels back and forth across the point P, with this
frequency.

If the initial straight segment length is less than half the pulse length, reflected waves will return
to the struck end before the termination of the pulse application. It was shown in Ref. [8] that
under these circumstances, the assembly accepts a large amount of energy. To avoid this, we
require

cto<2l, (an

P(gz )
i

e

Fig. 5. Tangential stress at point P, (dotted line represents experimental results).
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where t, is the pulse duration and ! is the length of the initial straight segment. In Ref. [6] it was
shown that pulses shorter than the ring mode period pass readily into the coil, i.e. for effective
trapping of the pulse

to>2mR/c. 32)

Thus, to prevent significant amounts of the shock from reaching the fixed end, the inequalities
(31) and (32) must be satisfied.

EXPERIMENTS

The experimental setup is shown in Fig. 2. The helical coil assembly was made of a 1/2-in.
diameter aluminum rod. The pulse was generated by dropping a hammer made of the same
aluminum rod on top of the assembly. The hammer was guided by a hollow cylinder when falling.
The bottom of the assembly was placed tightly in steel block as shown in Fig. 2. By measurement
we obtained the following data: diameter of the cross section = 1.26 cm, mean radius of the
helical coil = 13.33 cm, length of the top straight segment = 49.5 cm, length of the bottom straight
segment = 46.1 cm, bar velocity = 4.952 x 10’ cm/sec, length of the hammer =38.15cm, the
free-falling distance of the hammer =254 c¢m.

The theory predicts that a rectangular compressive tangential stress pulse of magnitude
(ghi2)’lc (in strain) and duration 2L/c will be generated, where g is the gravitational
acceleration, h is the free-falling distance of the hammer, and L is the length of the hammer.
Hence, the non-dimensional version of the experimental data is as follows:

k=558x10"",
8:—8,=371, 8:—8.=2m, 0.—8;=3.46, 3%
T0=15.71.

This was somewhat different from the numerical model of (27), but still comparable.

PE5,7)
o5
N A VAN
T \40 T
-05
Fig. 6. Tangential stress at point P; {dotted line represents experimental results).
PBr)
o5
j \ AN A A
g NG a0 T
-05

Fig. 7. Tangential stress at point P, (dotted line represents experimental results).
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Fig. 8. Outside fiber stress at point P, (dotted line represents experimental results).

P_(6,.7)

Fig. 9. Inside fiber stress at point P, (dotted line represents experimental results).

For strain measurements, BLH Electronics SR-4 type FAE-06N-12S13L strain gages (gage
length 1/16-in.) were used. The strain gages were installed at both inside and outside of each of
the following locations; mid-point of the top straight segment, points P,, P; and P.. This
arrangement permitted both extensional stress and the bending stress to be measured. The strain
was measured by Tektronix type R564B Storage Oscilloscope together with a Tektonix Strain
Gage Adapter. The conversion factor for non-dimensionalizing the time is R/c, which was
26.93 x 10 °sec for this experimental model. Also, the experimentally obtained strain was
normalized by the scale factor of (gh/2)"*/c, which in this experiment was 2.25 x 10~*, The results
were plotted in Figs. 4-9 as dotted lines, and the match between the numerical prediction and the
experimental result is good. The discrepancy between the two appears to be due to: (1) the
differences between the numerical model and the experimental model marked by (27) and (33); (2)
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Fig. 10. Energy transmitted beyond points P, and Ps.

that the bottom of the assembly was not perfectly rigid in the experiment; and (3) damping in the
system which diminished the amplitudes.

CONCLUSIONS

It has been shown that the assembly of Fig. 2 is capable of essentially trapping in its initial
straight section the energy from the application of an extensional pulse. However, some flexural
energy continuously leaks into the coil portion. In order for the assembly to prevent transmission
of shock to the fixed end effectively, the inequalities of (31) and (32) should be satisfied. These
criteria may be summarized by requiring the pulse length to be longer than the circumference of
the coil but shorter than twice the length of the initial straight segment.
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